Search results for "Molecular imaging"
showing 10 items of 59 documents
Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy
2020
Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability i…
Host-based lipid inflammation drives pathogenesis in Francisella infection
2017
Mass spectrometry imaging (MSI) was used to elucidate host lipids involved in the inflammatory signaling pathway generated at the host-pathogen interface during a septic bacterial infection. Using Francisella novicida as a model organism, a bacterial lipid virulence factor (endotoxin) was imaged and identified along with host phospholipids involved in the splenic response in murine tissues. Here, we demonstrate detection and distribution of endotoxin in a lethal murine F. novicida infection model, in addition to determining the temporally and spatially resolved innate lipid inflammatory response in both 2D and 3D renderings using MSI. Further, we show that the cyclooxygenase-2-dependent lip…
Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10
2018
Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…
Bacteriophage imaging : past, present and future
2018
The visualization of viral particles only became possible after the advent of the electron microscope. The first bacteriophage images were published in 1940 and were soon followed by many other publications that helped to elucidate the structure of the particles and their interaction with the bacterial hosts. As sample preparation improved and new technologies were developed, phage imaging became important approach to morphologically classify these viruses and helped to understand its importance in the biosphere. In this review we discuss the main milestones in phage imaging, how it affected our knowledge on these viruses and recent developments in the field. peerReviewed
RNA Nanostructure Molecular Imaging
2020
Atomic force and transmission electron microscopies (AFM/TEM) are powerful tools to analyze RNA-based nanostructures. While cryo-TEM analysis allows the determination of near-atomic resolution structures of large RNA complexes, this chapter intends to present how RNA nanostructures can be analyzed at room temperature on surfaces. Indeed, TEM and AFM analyses permit the conformation of a large population of individual molecular structures to be observed, providing a statistical basis for the variability of these nanostructures within the population. Nevertheless, if double-stranded DNA molecular imaging has been described extensively, only a few investigations of single-stranded DNA and RNA …
In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy.
2013
Background and study aims: In vivo molecular imaging represents a powerful tool for the immediate diagnosis of gastric cancer. In this study, the monoclonal antibody MG7, which is a specific molecular marker against gastric cancer, was labeled with fluorescent agents to enable in vivo real-time imaging by confocal laser endomicroscopy (CLE). Patients and methods: In vivo molecular imaging was performed in tumor-bearing mice from two kinds of human gastric cancer cell lines. Xenograft tumors were visualized in vivo first with a whole-body fluorescent imaging device and then by CLE using fluorescently labeled MG7 antibody. Gastric cancerous tissue and noncancerous mucosa from human biopsies o…
“AND” luminescent “reactive” molecular logic gates: a gateway to multi-analyte bioimaging and biosensing
2014
This review outlines examples that illustrate a recent and highly innovative concept in the field of (bio)molecular sensing, namely the simultaneous multi-analyte detection using "reactive" luminescent probes that are able to produce an optical signal only in response to multiple (bio)chemical inputs and through covalent chemical reactions with target (bio)analytes. Unlike conventional "AND" molecular logic gates based on supramolecular photochemical mechanisms, these unusual "smart" optical (bio)probes are suitable tools to track the rise and fall of a wider range of biologically relevant analytes, in complex media and with higher selectivity. The potential utility of this concept for in v…
A Promising Family of Fluorescent Water-Soluble aza-BODIPY Dyes for in Vivo Molecular Imaging.
2019
A new family of water-soluble and bioconjugatable aza-BODIPY fluorophores was designed and synthesized using a boron- functionalization strategy. These dissymmetric bis-ammonium aza-BODIPY dyes present optimal properties for a fluorescent probe; i.e., they are highly water-soluble, very stable in physiological medium; they do not aggregate in PBS, possess high quantum yield; and finally, they can be easily bioconjugated to antibodies. Preliminary in vitro and in vivo studies were performed for one of these fluorophores to image PD-L1 (Programmed Death-Ligand 1), highlighting the high potential of these new probes for future in vivo optical imaging studies.
In vivo molecular and morphological imaging by real time confocal mini-microscopy
2006
We evaluated a newly developed miniaturized confocal laser microscopy probe for real-time in vivo molecular and morphological imaging of normal, inflammatory, and malignant tissue in rodents. In the rigid mini-microscopy probe (diameter 7 mm), a single line laser delivers an excitation wavelength of 488 nm. Optical slice thickness is 7 μm, lateral resolution 0.7 μm. The range of the z-axis is 0 - 250 μm below the tissue surface. Organ systems were examined in vivo in rodent models of human diseases. FITC-labeled Lycopersion esculentum lectin was injected or selected cell populations stained for molecular targeting. Morphological imaging was performed using fluorescein sodium, FITC-labeled d…
Novel bifunctional DATA chelator for quick access to site-directed PET 68Ga-radiotracers: preclinical proof-of-principle with [Tyr3]octreotide
2017
Molecular imaging of tumors with the PET radionuclide 68Ga has gained momentum in clinical oncology due to the expanding availability of commercial 68Ge/68Ga-generators in combination with state-of-the-art PET/CT and PET/MRI hybrid imaging systems. Concurrently, interesting peptide-based or small-size vectors have been developed for theranostic use in cancer patients. Owing to the short half-life of 68Ga (t1/2 = 67.7 min) and the sensitivity of many targeting biomolecules, labeling and kit reconstitution in mild conditions allowing for quick access to ready-for-injection PET-tracers are highly desirable. The novel DATA ((6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate) chelator pre…